3.5.79 \(\int \frac {(a+b x)^{5/2} (A+B x)}{\sqrt {x}} \, dx\)

Optimal. Leaf size=159 \[ \frac {5 a^3 (8 A b-a B) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{64 b^{3/2}}+\frac {5 a^2 \sqrt {x} \sqrt {a+b x} (8 A b-a B)}{64 b}+\frac {\sqrt {x} (a+b x)^{5/2} (8 A b-a B)}{24 b}+\frac {5 a \sqrt {x} (a+b x)^{3/2} (8 A b-a B)}{96 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {80, 50, 63, 217, 206} \begin {gather*} \frac {5 a^3 (8 A b-a B) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{64 b^{3/2}}+\frac {5 a^2 \sqrt {x} \sqrt {a+b x} (8 A b-a B)}{64 b}+\frac {\sqrt {x} (a+b x)^{5/2} (8 A b-a B)}{24 b}+\frac {5 a \sqrt {x} (a+b x)^{3/2} (8 A b-a B)}{96 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^(5/2)*(A + B*x))/Sqrt[x],x]

[Out]

(5*a^2*(8*A*b - a*B)*Sqrt[x]*Sqrt[a + b*x])/(64*b) + (5*a*(8*A*b - a*B)*Sqrt[x]*(a + b*x)^(3/2))/(96*b) + ((8*
A*b - a*B)*Sqrt[x]*(a + b*x)^(5/2))/(24*b) + (B*Sqrt[x]*(a + b*x)^(7/2))/(4*b) + (5*a^3*(8*A*b - a*B)*ArcTanh[
(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/(64*b^(3/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{5/2} (A+B x)}{\sqrt {x}} \, dx &=\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {\left (4 A b-\frac {a B}{2}\right ) \int \frac {(a+b x)^{5/2}}{\sqrt {x}} \, dx}{4 b}\\ &=\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {(5 a (8 A b-a B)) \int \frac {(a+b x)^{3/2}}{\sqrt {x}} \, dx}{48 b}\\ &=\frac {5 a (8 A b-a B) \sqrt {x} (a+b x)^{3/2}}{96 b}+\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {\left (5 a^2 (8 A b-a B)\right ) \int \frac {\sqrt {a+b x}}{\sqrt {x}} \, dx}{64 b}\\ &=\frac {5 a^2 (8 A b-a B) \sqrt {x} \sqrt {a+b x}}{64 b}+\frac {5 a (8 A b-a B) \sqrt {x} (a+b x)^{3/2}}{96 b}+\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {\left (5 a^3 (8 A b-a B)\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx}{128 b}\\ &=\frac {5 a^2 (8 A b-a B) \sqrt {x} \sqrt {a+b x}}{64 b}+\frac {5 a (8 A b-a B) \sqrt {x} (a+b x)^{3/2}}{96 b}+\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {\left (5 a^3 (8 A b-a B)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {x}\right )}{64 b}\\ &=\frac {5 a^2 (8 A b-a B) \sqrt {x} \sqrt {a+b x}}{64 b}+\frac {5 a (8 A b-a B) \sqrt {x} (a+b x)^{3/2}}{96 b}+\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {\left (5 a^3 (8 A b-a B)\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {a+b x}}\right )}{64 b}\\ &=\frac {5 a^2 (8 A b-a B) \sqrt {x} \sqrt {a+b x}}{64 b}+\frac {5 a (8 A b-a B) \sqrt {x} (a+b x)^{3/2}}{96 b}+\frac {(8 A b-a B) \sqrt {x} (a+b x)^{5/2}}{24 b}+\frac {B \sqrt {x} (a+b x)^{7/2}}{4 b}+\frac {5 a^3 (8 A b-a B) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{64 b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 126, normalized size = 0.79 \begin {gather*} \frac {\sqrt {a+b x} \left (\sqrt {b} \sqrt {x} \left (15 a^3 B+2 a^2 b (132 A+59 B x)+8 a b^2 x (26 A+17 B x)+16 b^3 x^2 (4 A+3 B x)\right )-\frac {15 a^{5/2} (a B-8 A b) \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{\sqrt {\frac {b x}{a}+1}}\right )}{192 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^(5/2)*(A + B*x))/Sqrt[x],x]

[Out]

(Sqrt[a + b*x]*(Sqrt[b]*Sqrt[x]*(15*a^3*B + 16*b^3*x^2*(4*A + 3*B*x) + 8*a*b^2*x*(26*A + 17*B*x) + 2*a^2*b*(13
2*A + 59*B*x)) - (15*a^(5/2)*(-8*A*b + a*B)*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/Sqrt[1 + (b*x)/a]))/(192*b^(3/
2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.26, size = 144, normalized size = 0.91 \begin {gather*} \frac {5 \left (a^4 B-8 a^3 A b\right ) \log \left (\sqrt {a+b x}-\sqrt {b} \sqrt {x}\right )}{64 b^{3/2}}+\frac {\sqrt {a+b x} \left (15 a^3 B \sqrt {x}+264 a^2 A b \sqrt {x}+118 a^2 b B x^{3/2}+208 a A b^2 x^{3/2}+136 a b^2 B x^{5/2}+64 A b^3 x^{5/2}+48 b^3 B x^{7/2}\right )}{192 b} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((a + b*x)^(5/2)*(A + B*x))/Sqrt[x],x]

[Out]

(Sqrt[a + b*x]*(264*a^2*A*b*Sqrt[x] + 15*a^3*B*Sqrt[x] + 208*a*A*b^2*x^(3/2) + 118*a^2*b*B*x^(3/2) + 64*A*b^3*
x^(5/2) + 136*a*b^2*B*x^(5/2) + 48*b^3*B*x^(7/2)))/(192*b) + (5*(-8*a^3*A*b + a^4*B)*Log[-(Sqrt[b]*Sqrt[x]) +
Sqrt[a + b*x]])/(64*b^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.55, size = 246, normalized size = 1.55 \begin {gather*} \left [-\frac {15 \, {\left (B a^{4} - 8 \, A a^{3} b\right )} \sqrt {b} \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) - 2 \, {\left (48 \, B b^{4} x^{3} + 15 \, B a^{3} b + 264 \, A a^{2} b^{2} + 8 \, {\left (17 \, B a b^{3} + 8 \, A b^{4}\right )} x^{2} + 2 \, {\left (59 \, B a^{2} b^{2} + 104 \, A a b^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {x}}{384 \, b^{2}}, \frac {15 \, {\left (B a^{4} - 8 \, A a^{3} b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) + {\left (48 \, B b^{4} x^{3} + 15 \, B a^{3} b + 264 \, A a^{2} b^{2} + 8 \, {\left (17 \, B a b^{3} + 8 \, A b^{4}\right )} x^{2} + 2 \, {\left (59 \, B a^{2} b^{2} + 104 \, A a b^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {x}}{192 \, b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(B*x+A)/x^(1/2),x, algorithm="fricas")

[Out]

[-1/384*(15*(B*a^4 - 8*A*a^3*b)*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) - 2*(48*B*b^4*x^3 + 1
5*B*a^3*b + 264*A*a^2*b^2 + 8*(17*B*a*b^3 + 8*A*b^4)*x^2 + 2*(59*B*a^2*b^2 + 104*A*a*b^3)*x)*sqrt(b*x + a)*sqr
t(x))/b^2, 1/192*(15*(B*a^4 - 8*A*a^3*b)*sqrt(-b)*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) + (48*B*b^4*x^3 +
 15*B*a^3*b + 264*A*a^2*b^2 + 8*(17*B*a*b^3 + 8*A*b^4)*x^2 + 2*(59*B*a^2*b^2 + 104*A*a*b^3)*x)*sqrt(b*x + a)*s
qrt(x))/b^2]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(B*x+A)/x^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.02, size = 218, normalized size = 1.37 \begin {gather*} \frac {\sqrt {b x +a}\, \left (96 \sqrt {\left (b x +a \right ) x}\, B \,b^{\frac {7}{2}} x^{3}+128 \sqrt {\left (b x +a \right ) x}\, A \,b^{\frac {7}{2}} x^{2}+272 \sqrt {\left (b x +a \right ) x}\, B a \,b^{\frac {5}{2}} x^{2}+120 A \,a^{3} b \ln \left (\frac {2 b x +a +2 \sqrt {\left (b x +a \right ) x}\, \sqrt {b}}{2 \sqrt {b}}\right )-15 B \,a^{4} \ln \left (\frac {2 b x +a +2 \sqrt {\left (b x +a \right ) x}\, \sqrt {b}}{2 \sqrt {b}}\right )+416 \sqrt {\left (b x +a \right ) x}\, A a \,b^{\frac {5}{2}} x +236 \sqrt {\left (b x +a \right ) x}\, B \,a^{2} b^{\frac {3}{2}} x +528 \sqrt {\left (b x +a \right ) x}\, A \,a^{2} b^{\frac {3}{2}}+30 \sqrt {\left (b x +a \right ) x}\, B \,a^{3} \sqrt {b}\right ) \sqrt {x}}{384 \sqrt {\left (b x +a \right ) x}\, b^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(5/2)*(B*x+A)/x^(1/2),x)

[Out]

1/384*(b*x+a)^(1/2)*x^(1/2)/b^(3/2)*(96*((b*x+a)*x)^(1/2)*B*b^(7/2)*x^3+128*((b*x+a)*x)^(1/2)*A*b^(7/2)*x^2+27
2*((b*x+a)*x)^(1/2)*B*a*b^(5/2)*x^2+416*((b*x+a)*x)^(1/2)*A*a*b^(5/2)*x+236*((b*x+a)*x)^(1/2)*B*a^2*b^(3/2)*x+
120*A*a^3*b*ln(1/2*(2*b*x+a+2*((b*x+a)*x)^(1/2)*b^(1/2))/b^(1/2))+528*((b*x+a)*x)^(1/2)*A*a^2*b^(3/2)-15*B*a^4
*ln(1/2*(2*b*x+a+2*((b*x+a)*x)^(1/2)*b^(1/2))/b^(1/2))+30*((b*x+a)*x)^(1/2)*B*a^3*b^(1/2))/((b*x+a)*x)^(1/2)

________________________________________________________________________________________

maxima [B]  time = 0.93, size = 454, normalized size = 2.86 \begin {gather*} \frac {1}{4} \, \sqrt {b x^{2} + a x} B b^{2} x^{3} - \frac {7}{24} \, \sqrt {b x^{2} + a x} B a b x^{2} + \frac {35}{96} \, \sqrt {b x^{2} + a x} B a^{2} x + \frac {35 \, B a^{4} \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{128 \, b^{\frac {3}{2}}} + \frac {A a^{3} \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{\sqrt {b}} - \frac {35 \, \sqrt {b x^{2} + a x} B a^{3}}{64 \, b} + \frac {{\left (3 \, B a b^{2} + A b^{3}\right )} \sqrt {b x^{2} + a x} x^{2}}{3 \, b} - \frac {5 \, {\left (3 \, B a b^{2} + A b^{3}\right )} \sqrt {b x^{2} + a x} a x}{12 \, b^{2}} + \frac {3 \, {\left (B a^{2} b + A a b^{2}\right )} \sqrt {b x^{2} + a x} x}{2 \, b} - \frac {5 \, {\left (3 \, B a b^{2} + A b^{3}\right )} a^{3} \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{16 \, b^{\frac {7}{2}}} + \frac {9 \, {\left (B a^{2} b + A a b^{2}\right )} a^{2} \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{8 \, b^{\frac {5}{2}}} - \frac {{\left (B a^{3} + 3 \, A a^{2} b\right )} a \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{2 \, b^{\frac {3}{2}}} + \frac {5 \, {\left (3 \, B a b^{2} + A b^{3}\right )} \sqrt {b x^{2} + a x} a^{2}}{8 \, b^{3}} - \frac {9 \, {\left (B a^{2} b + A a b^{2}\right )} \sqrt {b x^{2} + a x} a}{4 \, b^{2}} + \frac {{\left (B a^{3} + 3 \, A a^{2} b\right )} \sqrt {b x^{2} + a x}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(B*x+A)/x^(1/2),x, algorithm="maxima")

[Out]

1/4*sqrt(b*x^2 + a*x)*B*b^2*x^3 - 7/24*sqrt(b*x^2 + a*x)*B*a*b*x^2 + 35/96*sqrt(b*x^2 + a*x)*B*a^2*x + 35/128*
B*a^4*log(2*b*x + a + 2*sqrt(b*x^2 + a*x)*sqrt(b))/b^(3/2) + A*a^3*log(2*b*x + a + 2*sqrt(b*x^2 + a*x)*sqrt(b)
)/sqrt(b) - 35/64*sqrt(b*x^2 + a*x)*B*a^3/b + 1/3*(3*B*a*b^2 + A*b^3)*sqrt(b*x^2 + a*x)*x^2/b - 5/12*(3*B*a*b^
2 + A*b^3)*sqrt(b*x^2 + a*x)*a*x/b^2 + 3/2*(B*a^2*b + A*a*b^2)*sqrt(b*x^2 + a*x)*x/b - 5/16*(3*B*a*b^2 + A*b^3
)*a^3*log(2*b*x + a + 2*sqrt(b*x^2 + a*x)*sqrt(b))/b^(7/2) + 9/8*(B*a^2*b + A*a*b^2)*a^2*log(2*b*x + a + 2*sqr
t(b*x^2 + a*x)*sqrt(b))/b^(5/2) - 1/2*(B*a^3 + 3*A*a^2*b)*a*log(2*b*x + a + 2*sqrt(b*x^2 + a*x)*sqrt(b))/b^(3/
2) + 5/8*(3*B*a*b^2 + A*b^3)*sqrt(b*x^2 + a*x)*a^2/b^3 - 9/4*(B*a^2*b + A*a*b^2)*sqrt(b*x^2 + a*x)*a/b^2 + (B*
a^3 + 3*A*a^2*b)*sqrt(b*x^2 + a*x)/b

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,x\right )\,{\left (a+b\,x\right )}^{5/2}}{\sqrt {x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x)*(a + b*x)^(5/2))/x^(1/2),x)

[Out]

int(((A + B*x)*(a + b*x)^(5/2))/x^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 87.99, size = 262, normalized size = 1.65 \begin {gather*} A \left (\frac {11 a^{\frac {5}{2}} \sqrt {x} \sqrt {1 + \frac {b x}{a}}}{8} + \frac {13 a^{\frac {3}{2}} b x^{\frac {3}{2}} \sqrt {1 + \frac {b x}{a}}}{12} + \frac {\sqrt {a} b^{2} x^{\frac {5}{2}} \sqrt {1 + \frac {b x}{a}}}{3} + \frac {5 a^{3} \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )}}{8 \sqrt {b}}\right ) + B \left (\frac {5 a^{\frac {7}{2}} \sqrt {x}}{64 b \sqrt {1 + \frac {b x}{a}}} + \frac {133 a^{\frac {5}{2}} x^{\frac {3}{2}}}{192 \sqrt {1 + \frac {b x}{a}}} + \frac {127 a^{\frac {3}{2}} b x^{\frac {5}{2}}}{96 \sqrt {1 + \frac {b x}{a}}} + \frac {23 \sqrt {a} b^{2} x^{\frac {7}{2}}}{24 \sqrt {1 + \frac {b x}{a}}} - \frac {5 a^{4} \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )}}{64 b^{\frac {3}{2}}} + \frac {b^{3} x^{\frac {9}{2}}}{4 \sqrt {a} \sqrt {1 + \frac {b x}{a}}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(5/2)*(B*x+A)/x**(1/2),x)

[Out]

A*(11*a**(5/2)*sqrt(x)*sqrt(1 + b*x/a)/8 + 13*a**(3/2)*b*x**(3/2)*sqrt(1 + b*x/a)/12 + sqrt(a)*b**2*x**(5/2)*s
qrt(1 + b*x/a)/3 + 5*a**3*asinh(sqrt(b)*sqrt(x)/sqrt(a))/(8*sqrt(b))) + B*(5*a**(7/2)*sqrt(x)/(64*b*sqrt(1 + b
*x/a)) + 133*a**(5/2)*x**(3/2)/(192*sqrt(1 + b*x/a)) + 127*a**(3/2)*b*x**(5/2)/(96*sqrt(1 + b*x/a)) + 23*sqrt(
a)*b**2*x**(7/2)/(24*sqrt(1 + b*x/a)) - 5*a**4*asinh(sqrt(b)*sqrt(x)/sqrt(a))/(64*b**(3/2)) + b**3*x**(9/2)/(4
*sqrt(a)*sqrt(1 + b*x/a)))

________________________________________________________________________________________